Tetrahedron Letters Vol. 21, pp **1145 - 1148 QPergamon Press Ltd. 1980. Printed in Great Britain**

ELECTROPHILIC REACTIONS OF **DHAD WITH A CYCLIC** DIENAMINE: SOLVENT INFLUENCE UPON THE COMPETITIVE FORMATION OF t4+21-,[2+21- **AND** MICHAEL TYPE ADDUCTS

Wolfgang Eberbach • and Jean Claude Carré

Chemisches Laboratorium der Universität Freiburg Albertstr.21, D-7800 Freiburg

Summary. The reaction course of DMAD with dihydroaxepine 2 depends **strongly on** the solvent: under appropriate conditions either 4, 5 or 6(E) is formed as the exclusive addition product.

In a recent communication we reported on the formation of the Diels-Alder adduct $\frac{4}{3}$, utilised as one structural proof for the dihydroazepine $\frac{3}{3}$ which can be generated from 1 through a thermal $[1,7]-$ H-homotrienyl shift 1 . Even though the straightforward $[4+2]-cycloaddition of 3 with dimethyl acetylene$ dicarboxylate **(DMAD) is** consistent with the high reactivity of electron rich dienes towards electron deficient olefins $^2)$, it was intriguing that <u>4</u> was **the only reaction product** and that no indication of the enamine character of $\frac{3}{2}$ (i.e. the ability to react in a $\left[2+2\right]$ -manner) $\frac{3}{2}$ has been obtained.

During a more thorough investigation, however, the appearance of 4 as the sole addition product turned out to be purely accidental and **due to the fact** that carbon tetrachloride had been chosen as the solvent. Here we describe the remarkably strong influence of various solvents upon the course of the reaction with DMAD, which allows a qualitative correlation between solvent polarity (E_{η} -values) and product distribution to be drawn.

Depending on the reaction medium, formation of one of three isomeric l:lcycloadducts can be induced in a completely selective way: For instance, while the bicyclic diene $\frac{4}{5}$ is produced in carbon tetrachloride at about 100°C, reaction in acetonitrile as well as in methanol takes place even at room temperature leading to a single product in each case, namely the azacyclononatriene 5 and the 6-vinyl-2, 3-dihydroazepine $6(E)$, respectively, the yields of isolated products being 80-90X (see Chart I).

The structure of the monocyclic triene 5 is assigned on the basis of the spectroscopic data (vide infra) and the observation, that on heating a clean transformation into the tetrahydroindene $\underline{8}$ takes place $(t_{1/2}$ (75^oC, C_6D_6) = 80 min); oxidation of 8 with DDQ leads to the indene $\overline{2}$. The cis-fusion of the five- and six-membered rings in $\underline{8}$ (substantiated by the coupling constant $J_{1.6}$ = 11.8 Hz) $^{4)}$ corroborates the proposed all-cis configuration of 5⁵ assuming, as is reasonable, that the 6e-cyclisation $\underline{5} \longrightarrow \underline{8}$ is a disrotatory process. At elevated temperatures the third reaction product, $6(E)$, undergoes geometrical isomerisation around the exocyclic C=C-bond leading to $6(2)$ in a reversible step (at 75^oC in CDCl₃ equilibrium is reached after ca. 8h with (Z)/(E) in the ratio 6:1) 7 .

If the addition of DMAD is carried out in benzene, bromobenzene, nitrobenzene or DME at 114° C, mixtures of $\underline{4}$ and $\underline{8}$ are obtained with equally good over-all yields (see Table); no 6 could be detected in these cases.

For an interpretation of the experimental results two basic reactions of dihydroazepine 3 with DMAD have to be considered (see Chart II): (1) Diels-Alder type cycloaddition affording $\frac{4}{5}$ and (2) formation of the dipolar species 10 , which either reacts under ring closure to give 9 (followed by rapid ring opening to the observed monocycle 5) or, in the presence of protic solvents, leads after protonation and deprotonation to the Michael adduct $6(E)^9$,

solvent	E_T -values ¹⁰⁾ kca1/mol		b) 5/2		products ^{c)}		
			[min]	4	5 and $/$ or 8	<u>6</u>	
cc_{4}	32.5		ca. 200	100			
C_6H_6	34.5		ca. 190	70	30		
C_6H_5Br	37.5		ca. 120	60	40		
DME	38.2		ca. 80	50	50		
$C_6H_5NO_2$	42.0	$\underline{\mathsf{ca}}$.	60	35	65		
CH ₃ CN	46.0	$\underline{\mathsf{ca}}$.	3		100		
CH ₂ OH	55.5	$\underline{\mathsf{ca}}$.	3			100	

Table. Half Lives and Product Distribution for the Reaction of 3 with DMAD in Different Solvents at 114° C a)

a) Molar ratio of 3 and **DMAD.** Higher concentrations of DMAD considerably affect both the rezction time and product distribution: Whereas the reaction in CC14 with a 2-3 fold excess of **DMAD** at 100°C gave **4 as the sole** adduct within 2h (Chart I), the use of a 10-20 fold excess afforded a mixture of 4 and <u>5/8</u> requiring an even shorter time for complete conversion.-
^{b)} Determined by ¹H-NMR spectroscopy.- ^{c)} Relative yields in percent.

This mechanism is in excellent agreement with the following observations (see Table and Chart II) 11 : (i) Use of the least polar solvent in this series gives rise to formation of $\underline{4}$ as the only product $(k_1 \ge k_2)$. (ii) With increasing polarity of the (aprotic) medium the relative portion of $\underline{4}$ decreases in favor of 5 (for CH₃CN: k₁ \ll k₂). (iii) There exists a qualitative correlation between solvent polarity and the reaction yields of 4 (relatively apolar transition state) and 5 (polar transition state); limiting E_{m} values for the exclusive formation of $\frac{4}{5}$ or $\frac{5}{5}$ (6) are 32 and 46, respectively. (iv) In protic solvents like methanol the Michael adduct $6(E)$ is the only product $(k_4\gg k_3)$. (v) The relative rates for the formation of 5 and 6 do not depend on the solvent; the rate limiting step for both pathways is the generation of dipole $\underline{10}$ $(k_2 \ll k_3, k_4)$.

$$
E = \frac{1}{\binom{k}{r}} \left[\begin{array}{c} \begin{matrix} R \\ R \end{matrix} \end{array}\right]^{r}
$$
\n
$$
E = \frac{1}{\binom{k}{r}} \left[\begin{array}{c} \begin{matrix} R \\ R \end{matrix}\right]^{r}
$$
\n
$$
E = \frac{1}{\binom{k}{r}} \left[\begin{array}{c} \begin{matrix} R \\ R \end{matrix}\right]^{r}
$$
\n
$$
E = \frac{1}{\binom{k}{r}} \left[\begin{array}{c} \begin{matrix} R \\ R \end{matrix}\right]^{r}
$$
\n
$$
E = \frac{1}{\binom{k}{r}} \left[\begin{matrix} R \\ R \end{matrix}\right]^{r}
$$
\n
$$
E = \frac{1}{\binom{k}{r}} \left[\begin{matrix} R \\ R \end{matrix}\right]^{r}
$$
\n
$$
E = \frac{1}{\binom{k}{r}} \left[\begin{matrix} R \\ R \end{matrix}\right]^{r}
$$
\n
$$
E = \frac{1}{\binom{k}{r}} \left[\begin{matrix} R \\ R \end{matrix}\right]^{r}
$$
\n
$$
E = \frac{1}{\binom{k}{r}} \left[\begin{matrix} R \\ R \end{matrix}\right]^{r}
$$
\n
$$
E = \frac{1}{\binom{k}{r}} \left[\begin{matrix} R \\ R \end{matrix}\right]^{r}
$$
\n
$$
E = \frac{1}{\binom{k}{r}} \left[\begin{matrix} R \\ R \end{matrix}\right]^{r}
$$
\n
$$
E = \frac{1}{\binom{k}{r}} \left[\begin{matrix} R \\ R \end{matrix}\right]^{r}
$$
\n
$$
E = \frac{1}{\binom{k}{r}} \left[\begin{matrix} R \\ R \end{matrix}\right]^{r}
$$
\n
$$
E = \frac{1}{\binom{k}{r}} \left[\begin{matrix} R \\ R \end{matrix}\right]^{r}
$$
\n
$$
E = \frac{1}{\binom{k}{r}} \left[\begin{matrix} R \\ R \end{matrix}\right]^{r}
$$
\n
$$
E = \frac{1}{\binom{k}{r}} \left[\begin{matrix} R \\ R \end{matrix}\right]^{r}
$$
\n
$$
E = \frac{1}{\binom{k}{r}} \left[\begin{matrix} R \\ R \end{matrix}\right]^{r}
$$
\n<

- $\frac{5}{2}$: mp 123°C (CCl₄); UV (CH₃CN): $\lambda_{\text{max}}(\epsilon) = 274$ nm (13370); ¹H-NMR (360 MHz, CDC1₃): ^T= 2.6-2.8 (Ph-H), 2.34 (9-H), 2.7 (6-H), 3.71 (4-H), 4.75 (2-H), 5.63/5.88 (N-CH₂), 6.20/6.28/6.31/6.36 (OCH₃), 7.3-7.4 (3-H); J_{2,3a}/
, $J_{2,3b}$ = 7.0/11.5, $J_{3a,4}$ /J_{3b,4}= 4.5/7.5, J_{N-CH_2} = 14.5 Hz.
- $\underline{6}$ (E): UV (CH₃CN): $\lambda_{\rm max}$ (e)= 335 nm (9050); ⁺H-NMR (360 MHz,CDCl₃): T= ~2.65(m-, $p-Ph-H$, 2.75($o-Ph-H$), 3.33 (4-H), 3.36 (7-H), 3.40 (2'-H), 5.51/5.60 $(N-\text{CH}_2)$, 5.62(2-H), 6.24/6.28/6.36/6.48 (OCH₃), 6.92/7.65 (3-H); J_{2,3a}= 5.5, $J_{2,3b}$ =2, $J_{3a,3b}$ = 14.5, $J_{3a,4}$ =8.8, $J_{3b,4}$ = 5.5, J_{N-CH_2} = 15.0 Hz.
- $6(2)$: ¹H-NMR (360 MHz, CDCl₃; data taken from the spectrum of the 6:1- mixture with $\underline{6}(E)$):T=~2.64(m-,p-Ph-H), 2.78(o-Ph-H), 3.11(7-H), 3.34(4-H), 4.66 $(2'-H)$, 5.54(N-CH₂), 5.65(2-H), 6.15/6.30/6.35/6.36 (OCH₃), 6.99/7.67 $(3-H); J_{2,3a} = 5.5, J_{2,3b} = 2.0, J_{3a,3b} = 14.0, J_{3a,4} = 8.5, J_{3b,4} = 6.2$ Hz.
- $\overline{1}$ **:** mp 117^OC (MeOH); UV (CH₃CN): $\lambda_{\text{max}} (\epsilon) = 355$ (8500,sh), 342 (10200,sh), 315 (15700), 256 (27900,sh), 248 nm (30200); ¹H-NMR (90 MHz,CDC1₃): ^T= $1.44/1.88$ (3-H/5-H), $2.7-2.8$ (m-, p-Ph-H), 3.2 (o-Ph-H), 4.06 (N-CH₂), 5.96/6.10/6.15/6.51 (OCH₃).
- s : **mp** 115Oc (MeOH); UV (CH3CN): Amax(296 **nm** (4650); 'H-NMR (360 MHz, CDC1₃): T= 2.69 (3-H), 2.7-2.8 (Ph-H), 5.41 (6-H), 5.96/6.04 (N-CH₂), 6.18/6.21/6.22/6.39 (OCH₃), 6.33 (1-H), 6.54 (8-H), 7.61/8.01 (9-H); $J_{1,3}$ ⁼ 1, $J_{1,6}$ ⁼ 11.8, $J_{1,9a}$ ^{=7.0}, $J_{1,9b}$ ⁼ 12.0, $J_{8,9a}$ ^{= 1}, $J_{8,9b}$ ^{= 7.5}, $J_{9a,9b}$ = 12.0, J_{N-CH_2} = 13.5 Hz.

Support of this work by the DEUTSCHE FORSCHUNGSGEMEINSCHAFT and the FONDS DER CHEMISCHEN INDUSTRIE is gratefully acknowledged.

- 1) W.Eberbach, J.C.Carré, H.Fritz, Tetrahedron Lett. 1977, 4385.
- 2) R.Sustmann, Pure Appl.Chem.40, 569 (1974).

____________________~~~~~~~~~~~~~~~~~~~

- 3) Review: D.N.Reinhoudt, Adv.Heterocycl.Chem. 21, 253 (1977).
- 4) W.Eberbach, Chem.Ber. 107, 3287 (1974), and references therein.
- 5) Additional evidence for this geometry comes from a detailed 13 C-NMR analysis $^{\rm 6)}$.
- 6) W.Eberbach, J.C.Carr&, H.Fritz, in preparation.
- 7) Interestingly, the reaction of $6(E)$ with N-phenyltriazolinedione takes place exclusively at C-7 and C- $\overline{2}$ ^{*}, while 6(Z) gives rise to the corresponding endocyclic Diels-Alder product (attack at C-4 and $C-7$) 6).
- 8) Reactions of this type have been reported for other 2,3_dihydroazepines: L.A.Paquette, J.Am.Chem.Soc. 86, 4092 (1964); S.R.Tanny, F.W.Fowler, ibid. 95, 7320 (1973).
- 9) Analogous behavior of a dipole similar to 10 (formed by the reaction of DMAD with Fischer's base) has previously been observed by Fleury et al.: C.Hubschwerlen, J.P.Fleury, H.Frits, Tetrahedron 32, 3031 (1976).
- 10) C.Reichardt, Solvent Effects in Organic Chemistry, Verlag Chemie, 1979.
- 11) For a theoretical treatment of the competition between [4+2]- and [2+2]cycloaddition reactions and pertinent solvent effects see N.D.Epiotis, J.Am.Chem.Soc. 94, 1924 (1972).

(Received in Germany 3 January 1960')